JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

"DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR ESTIMATION OF TENOXICAM IN ITS BULK AND PHARMACEUTICAL DOSAGE FORM."

Somnath Rasane *, Hemlata Bhavar, Sagar Magar

Department of Pharmaceutical Chemistry, Pravara Rural College of Pharmacy,

Pravaranagar

Tal-Rahata, Dist- Ahmednagar

ABSTRACT:

The present study describes a simple, accurate, precise and cost-effective reverse phase High Performance Liquid Chromatographic method for estimation of tenoxicam in their pharmaceutical dosage form. The separation was carried on Kromasil, C18, 250 mm X 4.6 mm, 5 μ m. Detection was done using UV detector at isocratic point 368 nm. The developed method employed mobile Acetonitrile: Buffer (60: 40 % v/v), with flow rate 1.0 ml/min. High linearity of the developed method was confirmed over concentration range 1-8 μ g/ml for tenoxicam with the correlation coefficient of 0.999. The Percentage RSD for precision of the method was found to be less than 2%. The percentage recoveries for tenoxicam was found to be in range 98.00-102.00 w/v. Peaks was obtained at retention time 2.9 min for for tenoxicam. By using all the above parameters, a simple, accurate, precise and cost-effective method were developed, optimize and validate.

KEYWORDS: RP-HPLC, Method optimization, development, tenoxicam.

INTRODUCTION:

Analytical chemistry is the analysis of material samples to gain an understanding of their chemical composition and structure. During last few decades, analytical chemistry has witnessed extensive development in terms of sophistication, quantitation and Instrumentation. Consequently, newer analytical techniques (such as hyphenated techniques FTIR, GCMS, LCMS, HPLC, HPTLC etc.) and their areas of

application have increased considerably because of the stringent requirements for testing and monitoring of the drugs for approval; the demand on quality, validation data and performance of analytical methods have gained an importance.

Analytical chemistry is often described as the area of chemistry responsible for characterizing the composition of matter both qualitatively (what is present) and quantitatively (how much is present).^[1-8]

4-hydroxy-2methyl-n-(pyridinyl-2-yl)-2h-thieno [2, 3-e] is the chemical name for tenoxicam. Non-steroidal anti-inflammatory medication -1, 2thiazine-3-carboxamide 1, 1- dioxide It is used to treat rheumatoid arthritis, osteoarthritis, and ankylosing spondylitis by reducing inflammation, oedema, stiffness, and pain. In BP, it is official.

Fig 1: Structure of Tenoxicam

Tenoxicam is a nonsteroidal anti-inflammatory medication sold under the trade names Mobiflex and others (NSAID). It's used to treat rheumatoid arthritis, osteoarthritis, ankylosing spondylitis (a kind of arthritis that affects the spine), tendinitis (tendon inflammation), bursitis (inflammation of a fluid-filled sac around joints and around the bones), and periarthritis of the shoulders or hips (inflammation of tissues surrounding these joints).

Material and Method

Table 1: List of apparatus/	instruments used.
-----------------------------	-------------------

Sr. No.	Instrument	Make	Series/Model
1	Balance	Aczet	CY224
2	PH-Meter	Labman	LMPH-10
3	HPLC	Agilent	1260 Infinity II
4	UV-spectrophotometer	Jasco	550
5	Ultrasonicator	Bio Technics India	12L300H

Sr. No.	Chemicals/ Reagents/ Solvents	Supplier	Grade
1	Methanol	Merck	HPLC grade
2	Acetonitrile	Merck	HPLC grade
3	Water	Siddhi Lab	HPLC grade
4	Ortho-phosphoric Acid (OPA)	Merck	HPLC grade
5	Ethanol	Merck	Analytical
6	DMF	Merck	Analytical
7	DMSO	Merck	Analytical
8	HCl	Merck	Analytical

Fable 2: I	List of	chemicals	used
1 able 2.1	List of	chemicals	usea

Table 3: HPLC System

	HPLC System			
	HPLC Binary Gradient System			
Model No.	1260 Infinity II			
Make	Agilent			
Pump	DEAX02386			
Detector	DEACX16446			
Column	Kromasil C1 <mark>8 co</mark> lumn (250 mm X 4.6 mm i.d. 5µm).			
Software	Software Openlab EZ Chrome			

Table 4: Analytical Balance

Analytical Balance: Azcet High Precision Balance			
Model	CY 224C		
Maximum	220 gm		
Minimum 0.001gm			
pH Meter: Digital pH meter			
Make LabMan			

Preparation of standard stock solution :

Weighed accurately 10 mg of Tenoxicam and transferred to 50 mL volumetric flask. Added 30-35 mL of 0.1 N NaOH solution, sonicated to dissolve it completely, made the volume up to the mark with 0.1 N NaOH solution. Further Diluted 0.5 mL to 20 mL with mobile phase. (5 PPM of Tenoxicam).

API Sample Preparation: Weighed accurately 10 mg of Tenoxicam and transferred to 50 mL volumetric flask. Added 30-35 mL of 0.1 N NaOH solution, sonicated to dissolve it completely, made the volume up to the mark with 0.1 N NaOH solution. Further Diluted 0.5 mL to 20 mL with mobile phase. (5 PPM of Tenoxicam)

Selection of analytical wavelength from the spectrophotometric method: Analytical wavelength for the examination was selected from the wavelength of maximum absorption from the spectrophotometric analysis. The standard solution was scanned between 200-400 nm. The wavelength of maximum absorption was determined for drug tenoxicam and it was 368 nm.

Fig. 2: UV spectrum of Tenoxicam

Table 5. Optimized Chromatographic Conditions.				
Parameter	Description			
Mode	Isocratic			
Column Name	Kromasil C18, (250 mm X 4.6 mm i.d.) 5µm			
Detector	UV Detector			
Injection Volume	20 µl			
Wavelength	368 nm			
Column Oven temp	35°C			
Mobile Phase	Methanol: Water			
	(70: 30)			
Flow Rate	1.0 ml/min			

Table 5: Optimized Chromatographic Conditions:

Fig 3: Chromatogram for optimized RP-HPLC condition (Tenoxicam)

RESULT AND DISCUSSION :

Analysis of test samples (Assay)

a) Assay Calculation:

© 2021 JETIR Aug	ust 202	21, Volum	e 8, Issi	ue 8			WV	w.jetir.or	g (ISSN	-2349-516	52
16170241	V	10.2	V	10	V	100	V	20	V	100	
16100420	А	100	Х	20	X	10.3	Х	10	X	100	
1.00433659 5	X	0.102		0.5		9.7087378 6		2		100	

% Assay =99.46%

Validation of RP-HPLC Method:

The developed method for estimation of Tenoxicam was validated as per ICH guidelines for following parameters.

1) **FILTRATION STUDY:** Filtration study of an analytical procedure checks the interference of extraneous components from the filter, deposition on filter bed and compatibility of the filter with the sample. This study will be conducted with a sample of **tablet**.

Filter study performed by using Centrifuged sample (Unfiltered), Sample passed through 0.45 μ PVDF filter and 0.45 μ Nylon filter, by discarding 5 mL of solution. (Performed on Tablet sample)

Sample	Area	% Absolute difference
Unfiltred	5189743	NA
0.45 µ PVDF filter	5176283	0.26
0.45 μ Nylon filter	5155971	0.65

Table. No. 6 Analytical data of Filter Test for Tenoxicam

2) STABILITY OF ANALYTICAL SOLUTION

Stability study was conducted for standard solution and test solution. Test solution stability was performed using test sample. Stability study was performed at normal laboratory conditions. The solution was stored at normal illuminated laboratory conditions and analyzed after 12 hours and 24 hours.

	Sample	solution	Standard solution		
Time point Area % Absolute difference		Time point	Area	% Absolute difference	
Initial	5176294	NA	Initial	5162809	NA
12 Hours	5153371	0.44	12 Hours	5139148	0.46
24 Hours	5131056	0.87	24 Hours	5120608	0.82

 Table. No. 7
 Analytical data of Tenoxicam for solution Stability

3) SPECIFICITY: Specificity is the ability to access unequivocally the analyte in the presence of components which may be expected to be present.

Blank, standard solution and test sample prepared and injected to check peak purity. Blank does not showed any interference at R.T. of Tenoxicam. Peak purity for both standard as well as sample were within limits. Sample solution exhibit same R.T. as that of standard solution. Hence developed chromatographic method passed the criteria for specificity.

Table No.	8: Results	of specificity
	allenger .	

Description	Observation
Blank	No interference at R.T. of Tenoxicam in blank
Placebo	No interference at R.T. of Tenoxicam in placebo
Standard solution	Peak purity was 0.998 for Tenoxicam
Test sample	Peak purity was 0.997 for Tenoxicam

4) Linearity and Range

Linearity of an analytical method is its ability to elicit test results that are proportional to the concentration of analyte in samples within a given range.

Table no: 09	Result and statistical	l data of linearit	y of Tenoxicam
	itesuit and statistical	i uata or micarn	y of renomean

Level	Conc. (µg/mL)	Area	Mean	% RSD
		497591		
10%	0.51	499831	500520	0.665
		504138		
		2556247		
50%	2.55	2534186	2544472	0.436
		2542983		
		5136856		
100%	5.10	5129759	5142300	0.311
		5160284		
		6472641	D	
125%	6.32	6439410	6450033	0.304
	6	6438049		
	.6	7598364	3	
150%	7.65	7652148	7625468	0.353
		7625891		

Fig.8.41: Linearity graph of Tenoxicam

Parameters	Result
Detection Wavelength	368 nm
Beer's law limit	0.5- 7.6 μg/mL
Slope	1007086.588
Intercept	-5612.308822
Correlation coefficient (R ²)	0.9998

 Table No. 10 Data for calibration curve of Tenoxicam

5) ACCURACY (RECOVERY):

The accuracy of an analytical method is the closeness of test results obtained by that method to the true value. The accuracy of an analytical method is determined by applying the method to analyzed samples to which known amounts of analyte have been added. Recovery of analytical procedure was found well within acceptance criteria at all 3 levels. % Recovery not get hampered by changed in analyte concentration

Level (50 %)	Area	Recovered conc	Added conc	% Recovery	
	2573164	2.54	2.55	99.61	
50	2511081	2.48	2.50	99.20	
	2543716	2.52	2.55	98.82	
	5149207	5.09	5.05	100.79	
100	5161071	5.10	5.10	100.00	
	5167159	5.11	5.15	99.22	
	7566284	7.48	7.55	99.07	
150	7581091	7.50	7.50	100.00	
	7579148	7.49	7.55	99.21	

 Table no. 11 Result and statistical data of accuracy for Tenoxicam

Chromatograms of Accuracy for drug:

Fig.8.20: Chromatograms of Accuracy for drugs at level of 50% -

6) PRECISION

Precision of an analytical method is the degree of agreement among individual test results when the procedure is applied repeatedly to multiple samplings of a homogenous sample. Precision of an analytical method is usually expressed as standard deviation or relative standard deviation. Precision was performed on API sample. % RSD was found well within acceptance limit and hence method is precise.

A) Intraday Precision:

 Table no.12 Analytical data Intraday Precision of Tenoxicam

Sample	Area	% Assay
Sample 1	5103814	100.93
Sample 2	5125843	99.38
Sample 3	5129713	100.44
Sample 4	5105831	98.99
Sample 5	5176984	99.40
Sample 6	5146023	100.76
Mean		99.98
STD DEV	0.824492	
% RSD		0.825

B) Interday Precision:

Sample	Area	% Assay
Sample 1	5106813	100.56
Sample 2	5113982	99.72
Sample 3	5109143	100.61
Sample 4	5176317	99.95
Sample 5	Sample 5 5176256	
Sample 6	5106521	99.57
Mean		100.22
STD DEV		0.550842
% RSD	0.550	
	Mean	100.103
Precision plus intermediate precision	STD DEV	0.68016
	% RSD	0.679

Table no. 13 Analytical data Interday Precision of Tenoxicam

Acceptance Criteria:

The % RSD for the six samples NMT 2.0.

For Both: % RSD for 12 sample (Precision and Intermediate Precision samples) NMT 2.0 %

Conclusion: Precision: The %RSD of method precision is 0.53 & 0.495 Therefore, the HPLC method for the determination of tenoxicam is precise.

Chromatogram of Interday Precision:

% RSD for 12 sample (Precision and Intermediate Precision samples) NMT 2.0 %

7) **ROBUSTNESS:**

The robustness of an analytical method is a measure of its capacity to remain unaffected by small but deliberate variations in method parameters and provides an indication of its reliability during normal usage.

Following changes made under Robustness:

- > Change in Wavelength
- ➢ Change in flow rate
- Change in column oven temperature

Effect of variation in the flow rate of the mobile phase

1. Change in flow Rate

Sr. No.	System Suitability	Tenoxicam		Limits
pa	parameter	As such+10%	As such-10%	_
1	Peak area response	5081423	5008149	
2	Theoretical plates	14865	14214	NLT 2000
3	Asymmetry	1.11	1.13	NMT 2.0
4	% Assay	100.74	100.78	

Table no. 14 Data for change in flow rate Tenoxicam

2. Change in wavelength:

Table No. 15 Analytical Data for change in wavelength for Robustness of Tenoxicam

Sr. No. System Suitability		Ten	Limits		
	parameter	As such+3 nm	As such-3 nm		
1	Peak area response	4976124	4928749		
2	Theoretical plates	14638	14745	NLT 2000	
3	Asymmetry	1.12	-1.12	NMT 2.0	
4	% Assay	100.82	99.72		

3. Change in Column Oven Temperature (COT)

 Table No. 16
 Analytical Data for change in COT for Robustness of Tenoxicam

Sr. No.	System Suitability	Tenoxicam		Limits
	parameter	As such+2ºC	As such-2 ⁰ C	
1	Peak area response	5238147	4862764	
2	Theoretical plates	14873	13276	NLT 2000
3	Asymmetry	1.12	1.14	NMT 2.0
4	% Assay	100.80	100.46	

Table no. 17 change in parameter

Change in Parameter	Standard area	Theoretical plates	% Assay	
Wavelength by +3 NM	4976124	14638	100.82	
Wavelength by -3 NM	4928749	14745	99.72	
Flow rate by +10%	5081423	14865	100.74	
Flow rate by -10%	5008149	14214	100.78	
Column oven temp by +2°C	5238147	14873	100.80	
Column oven temp by -2°C	4862764	13276	100.46	

8) Limit of Detection

The LOD is the lowest limit that can be detected. Based on the S.D. deviation of the response and the slope. The limit of detection (LOD) may be expressed as:

LOD = 3.3 (SD)/S

Where, SD= Standard deviation of the Y intercept

S = Slope

Tenoxicam- LOD = 3.3 x 57057.222/ 682788.749 = 0.28 µg/ml

The LOD of Tenoxicam was found to be 0.28 $\mu g/ml$

9) Limit of Quantitation

The LOQ is the lowest concentration that can be quantitatively measured. Based on the S.D. deviation of the response and the slope.

The quantitation limit (LOQ) may be expressed as

LOQ = 10 (SD)/S

Where, SD = standard deviation of Y intercept

S = Slope

Tenoxicam- LOQ = 10 x 57057.222/ 682788.749 = 0.84 µg/ml

The LOQ of Tenoxicam was found to be 0.84 µg/ml

Table no. 17: Result data of LOD and LOQ

Name	LOD	LOQ
Tenoxicam	0.28	0.84

10) System suitability test:

Sample solution of Tenoxicam were injected three times into HPLC system as per test procedure. The system suitability parameters were evaluated from standard chromatograms obtained, by calculating the % RSD of retention times, tailing factor, theoretical plates and peak areas from three replicate injection.

System suitability is a Pharmacopeial requirement and is used to verify, whether the chromatographic system is adequate for analysis to be done. The tests were performed by collecting data from Five replicate injection of standard drug solution and the results are recorded.

Sr No.	Standard solution	Area	Asymmetry	Theoretical plates
1	Standard_1	5163842	1.11	14529
2	Standard_2	5139751	1.12	14367
3	Standard_3	5139706	1.12	14298
4	Standard_4	5173149	1.11	14327
5	Standard_5	5173054	1.11	14554
	Mean	5157900	1.11	14415
	STD Dev	17013.89812		
	% RSD	0.33	et.	

Table no. 18: Results for system suitability test of Tenoxicam

Conclusion:

A literature survey revealed that several methods have been reported for the determination of Tenoxicam in bulk drug or pharmaceutical dosage forms separately, but no one method was developed for estimation of tenoxicam by using RP-HPLC method. Hence, in the present study, a new, sensitive, and suitable reversed-phase high-performance liquid chromatography method was developed and validated for the determination of tenoxicam in bulk drug and pharmaceutical dosage form.

The developed method has several advantages, including reproducibility of results, rapid analysis, simple sample preparation, and improved selectivity as well as sensitivity. The regression coefficient (r^2) for each analyte is not less than 0.999 which shows good linearity. The % recovery was in the acceptable range in the tablet dosage form. The % percent RSD was also less than 2.0 % showing a high degree of precision of the proposed method.

Since the developed method is robust and reproducible and also less time consuming, it can be performed for routine analysis in the pharmaceutical industry for the bulk drug of Tenoxicam and also in the pharmaceutical dosage form.

Acknowledgement :

The authors express their gratitude to the Pravara Rural College of Pharmacy, Loni and Vidisha Analyticals for providing all the facilities.

References:

- 1. Sabir, A.M. (2013). HPLC method development and validation -a review. International Research Journal of Pharmacy, 4(4), 39-46.
- David Harvey. Modern Analytical Chemistry. 1st ed. United States of America: The McGraw-Hill Companies, Inc; 2000. p. 578-584

- Connors K A. "A Text Book of Pharmaceutical Analysis", John Wiley and Sons, NJ 2002;(3):373-374
- Skoog D A, West D M, Holler J F. "Analytical Chemistry An Introduction", Saunders College Publishing. 1994;(6):1-2.
- Sharma B K. "Instrumental Methods of Chemical Analysis", Goel Publishing House. Meerut 1997; (18): 2-3. 3-10, 81-87.
- 6. Chatwal G R, Sham K A. "Instrumental methods of chemical Analysis", Himalaya Publishing house.2002;(5):1-2.
- Willard H H, Merritt L L, Dean J A, Settle F A. "Instrumental Methods of Analysis". CBS Publishers & Distributors. Delhi.200;(7):159-171, 580-599.
- 8. Ewing G W. "Instrumental Methods of Chemical Analysis", McGraw Hill Book Company. New York, 1960; (5): 1-2.
- Sharma. B. K, "Instrumental method of chemical analysis, Introduction to Analytical Chemistry" Goel Publishing House Meerut, 23rd ed. 2004. 3-12.
- 10. Bhatt, D. A., & Rane, S. I. (2011). QbD approach to analytical RPHPLC method development and its validation. International Journal of Pharmacy and Pharmaceutical Sciences, 3(1), 179-187.
- 11. Malviya, R., Bansal, V., Pal, O. P., & Sharma, P. K. (2010). High performance liquid chromatography: a short review. Journal of global pharma technology, 2(5), 22-26.
- 12. Srivastava A. K, Jain P.C, Instrumental approach to Chemical analysis, S. Chand and Company LTD. Ramnagar, New Delhi.4th ed. 2005; 36-40.
- 13. http://www.wesleylearning.ie/resources/science/chemistry/topics/instrumentation/HPLC/ principle.htm
- Kazakevich, Y. V., & Lobrutto, R. (2007). HPLC for pharmaceutical scientists. John Wiley & Sons.
- 15. High Performance Liquid Chromatography (HPLC): Principle, types, instrumentation and Applications. By editorial team on January 2020 in biochemistry, Laboratoryinfo. <u>https://laboratoryinfo.com/hplc/</u>
- 16. Margaret E. Lacourse, William R. LaCourse "CHAPTER 17-General instrumentation in HPLC" University of Maryland, Baltimore County, MD, United States, Liquid Chromatography (Second Edition) Fundamentals and instrumentations, 2017, 417-429.
- 17. https://www.waters.com/webassets/cms/events/docs/FundamentalsofHPLCWebinar_TRS_ 102012.pdf
- Hasa "What is the Difference Between C8 and C18 Column in HPLC" pediaa Expore February 23, 2020 <u>https://pediaa.com/what-is-the-difference-between-c8-and-c18-columnin-hplc/</u>
- 19. Ankur Chaudhari "Difference Between C8 and C18 Column used in HPLC" Pharma guidelines. May 2018. https://www.pharmaguideline.com/2018/05/difference-between-c8- and-c18columns.html#gsc.tab=0

- Swartz, M. (2010). HPLC detectors: a brief review. Journal of Liquid Chromatography & Related Technologies, 33(9-12), 1130-1150.
- Jeffery G H, Mendharm J, Denny C R, Vogel's Textbook of Quantitative Chemical Analysis. Addison Wesley Longman LTD, 1996, (5):29
- 22. Pavia, D.L., Lampman, G.M., Kriz, G.S. and Vyvyan, J.A., Introduction to spectroscopy. Cengage Learning. 2008. 26-90.
- 23. Scott R P W, Eds. "In; Liquid Chromatography for the Analyst", Marcel, New York, 1994; (67): 1-4.
- 24. 24. Levin, S. (2010). High Performance Liquid Chromatography (HPLC) in the pharmaceutical analysis. Pharmaceutical Sciences Encyclopedia: Drug Discovery, Development, and Manufacturing, 1-34.
- 25. http://en.wikipedia.org/wiki/High_performance_liquid_chromatography
- 26. Ahuja, S., & Dong, M. (Eds.). (2005). Handbook of pharmaceutical analysis by HPLC. Elsevier.
- 27. Rao, B. V., Sowjanya, G. N., Ajitha, A., & Rao, V. U. M. (2015). A review on stability indicating HPLC method development. World journal of pharmacy and pharmaceutical sciences, 4(8), 405-423.
- 28. https://www.waters.com/waters/fr_FR/Chromatographic-Bands%2C-Peaks-and-BandSpreading/nav.htm?locale=fr_FR&cid=134803614
- 29. Bose, A. (2014). HPLC calibration process parameters in terms of system suitability test. Austin Chromatography, 1(2), 1-4.
- 30. Sangshetti, J. N., Deshpande, M., Zaheer, Z., Shinde, D. B., & Arote, R. (2017). Quality by design approach: Regulatory need. Arabian Journal of chemistry, 10, S3412-S3425.
- 31. International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use ich harmonized tripartite guideline validation of analytical procedures: text and methodology Q2(R1) Validation. <u>https://www.ich.org/page/qualityguidelines</u>
- 32. Pendbhaje N.S. Jamdhade A.A., Pathan S.M., Nirmal R.V. (2021) A Review on Quantification of Brexpiprazole in Its Bulk and Pharmaceutical Dosage Form by Various Analytical Methods. International Journal of Pharmaceutical Research and Applications Volume 6, Issue 1, 1118-1132
- Vidushi, Y., & Meenakshi, B. (2017). A review on HPLC method development and validation. Res J Life Sci, Bioinform, Pharm Chem Sci, 2(6), 178.
- 34. Nilesh S. Pendhbaje, Rupali V. Nirmal, Ashwini A. Jamdhade, Shain M. Pathan. (2021) Method Development and Validation by HPLC: A Brief Review. Research & Reviews: A Journal of Pharmaceutical Science. 12(1): 27–39p.
- 35. Mukthi Thammana, (July September, 2016) A Review on High Performance Liquid Chromatography (HPLC), Research & Reviews: Journal of Pharmaceutical Analysis, 5(2). 22-28.